Fast Fourier Transform (FFT)
(Theory and Implementation)

_earning Objectives

¢ DFT algorithm.
¢ Conversion of DFT to FFT algorithm.
¢ Implementation of the FFT algorithm.

DFT Algorithm

¢ The Fourier transform of an analogue
signal x(t) Is given by:

¢ The Discrete Fourier Transform (DFT) of
a discrete-time signal x(nT) Is given by:.

DFT Algorithm

¢ Ifwe let: then:

Sampled signal

Sample

Frequency Domain

)
°
2
5 0
S
<t

Magnitude

0.2 0.3
Normalised Frequency

DFT Algorithm

X[n] = input
X[K] = frequency bins
W = twiddle factors

X(0) = X[0JW,° + X[1]W, L +...+ X[N-1]JW " N-1)
X(1) =x[0]W,C + X[1]W\I +...+ X[N-1]W (D

X(K) =x[0]W\0 + X[L]W KT +...+ X[N-1JW < N-D

X(N-1) =x[0JW,° + Xx[1]W N-D*T + |+ x[N-1]W,, N-DN-1)

Note: For N samples of x we have N frequencies
representing the signal.

Performance of the DFT Algorithm

¢ The DFT requires N2 (NxN) complex
multiplications:

+ Each X(k) requires N complex
multiplications.

+ Therefore to evaluate all the values of the
DFT (X(0) to X(N-1)) N° multiplications are
required.

¢ The DFT also requires (N-1)*N complex
additions:

+ Each X(k) requires N-1 additions.

+ Therefore to evaluate all the values of the
DFT (N-1)*N additions are required.

Performance of the DFT Algorithm

-
o
(@)

Number of Additions

Number of Multiplications

o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Number of Samples Number of Samples

¢ Can the number of computations required
be reduced?

DFT — FFT

¢ A large amount of work has been devoted

to reducing the computation time of a
DFT.

¢ This has led to efficient algorithms which

are known as the Fast Fourier Transform
(FFT) algorithms.

DFT — FFT

x[n] = x[0], x[1], ..., X[N-1]

¢ Lets divide the sequence x[n] into even

and odd sequences:
+ X[2n] =X[0], x[2], ..., XIN-2]
+ X[2n+1] =Xx[1], X[3], ..., X[N-1]

DFT > FFT
Equation 1 can be rewritten as:

N

—1

2 2
X(k)=">x Zn}/v +W Zx 2n+1}/v

n=0

=V (k +WZ k

DFT — FFT

¢ The result is that an N-point DFT can be
divided into two N/2 point DFT’s:

N-point DFT

¢ Where Y (k) and Z(k) are the two N/2
point DFTs operating on even and odd
samples respectively:

Two N/2-
point DFTs

DFT — FFT

¢ Periodicity and symmetry of W can be
exploited to simplify the DFT further:

: Symmetry

. Periodicity

DFT — FFT

¢ Symmetry and periodicity:

DFT — FFT

¢ Finally by exploiting the symmetry and
periodicity, Equation 3 can be written as:

N, N,
2 2

N n n
(ko | = Snl w3l
2 n=0 2

n=0

Y(k)-W}zZ (k)

DFT - FFT

X (K)=Y (k) + W, Z k) "20"--@—)

X(k +%j =Y(k)-WeZ(k); k= 0,...(%—]

¢ Y(k) and W *Z(Kk) only need to be
calculated once and used for both
equations.

¢ Note: the calculation is reduced from O to
N-1to O to (N/2 - 1).

DFT — FFT

X (K)=Y (k) + W, Z k) "20"--@—)
X(k“L%j:Y(k)—WNkZ(k); k=0,...(%—j

¢ Y(k) and Z(k) can also be divided into N/4
point DFTs using the same process shown

above:

¢ The process continues until we reach 2
point DFTSs.

DFT — FFT

N/2 point
DFT

N/2 point
DFT

X[0] = y[0]+W¢z[0]
X[1] = y[1]+W,z[1]

X[N/2] = y[0]-W,z[0]
X[N/2+1] = y[1]-W,z[1]

[llustration of the first decimation in time

FFT.

FFT Implementation

¢ Calculation of the output of a ‘butterfly’:

MUOE U +jU; ><::: U=U,"+JU;" = X(K)
WA Z(K) = (L HL) (WA W) L'=L, 4L, = X(k+NI2)

-1

Key: U= Upper r = real
L = Lower | = imaginary

¢ Different methods are available for
calculating the outputs U’ and L.

¢ The best method Is the one with the least
number of multiplications and additions.

FFT Implementation

¢ Calculation of the output of a ‘butterfly’:

(Lr+j Li)(Wr+jWi) L,:Lr,+j I—i’

-1

(Lr + JL)(Wr + JW,): LW, + LW, + JLW, - LW,

U = [(LrWr _ I—iWi)+ J(Lrwl + I—i\Nr)]+[Ur + JUI]
(LrWr B I—i\Ni +Ur)+ J(Lrwl + I—i\Nr +Ui)

L’ (Ur + jUi)_[(LrWr - LiWi)+ j(LrWi + LW,)]
U, -LW, +LW)+ jlU, LW —LW,)

FFT Implementation

¢ Calculation of the output of a ‘butterfly’:
U+, U=U,"+jU; = (L, W, - LW, + U+ (L, Wi+ LW, + U)
(Lr+j Li)(Wr+jWi) ><::: L,:Lr,+j L= (Ur' LW, +L; Wi)+j(Ui - L W;- I—iWr)
-1
¢ To further minimise the number of

operations (* and +), the following are
calculated only once:

templ =L W, temp2 = LW, temp3 = L W, temp4 = LW,
templ 2 =templ-temp2 temp3 4 =temp3 + temp4

U’ =templ-temp2+U, =templ 2+ U,
U =temp3 + temp4d + U, =temp3 4 + U,
L’ =U,-templ+temp2 =U,-templ_2
L’ =U;-temp3 -temp4 =U;-temp3_4

FFT Implementation (Butterfly Calculation)

¢ Converting the butterfly calculation into
‘C’ code:

templ (y[lower].real * WR);
(y[lower].imag * Wl);
(y[lower].real * WI);

(y[lower].imag * WR);

temp2
temp3
temp4

templ 2 templ - temp2;
temp3 4 temp 3 + temp4;

templ 2 + y[upper].-real;
temp3_4 + y[upper].imag;
ylupper].imag - temp3_4;
y[upper].-real - templ 2;

y[upper].-real
y[upper] . imag
y[lower].1mag

y[lower].real

FFT Implementation

¢ To efficiently implement the FFT
algorithm a few observations are made:

+ Each stage has the same number of
butterflies (number of butterflies = N/2, N is
number of points).

+ The number of DFT groups per stage is equal
to (N/2stage),

+ The difference between the upper and lower
leg is equal to 2stage-1,

+ The number of butterflies in the group Is
equal to 2stage-1,

FFT Implementation
Example: 8 point FFT

¢ Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/2stage
+ Number of butterflies/block = 2stage-1

FFT Implementation

Example: 8 point FFT
(1) Number of stages:

¢ Decimation in time FFT:
« Number of stages = log,N
+ Number of blocks/stage = N/2stage
+ Number of butterflies/block = 2stage-1

FFT Implementation

Example: 8 point FFT
(1) Number of stages:
+ N =1

Stage 1

stages

¢ Decimation in time FFT:
« Number of stages = log,N
+ Number of blocks/stage = N/2stage
+ Number of butterflies/block = 2stage-1

FFT Implementation

Stage 1 Stage 2

Example: 8 point FFT
(1) Number of stages:
+ N =2

stages

¢ Decimation in time FFT:
« Number of stages = log,N
+ Number of blocks/stage = N/2stage
+ Number of butterflies/block = 2stage-1

Stage 1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
S\

stages — 3

Decimation in time FFT:

« Num
« Num
« Num

per of stages = log,N
ner of blocks/stage = N/2stage

ner of butterflies/block = 2stage-1

FFT Implementation

Stage 1 Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

+ Stage 1:

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 1 Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
« Stage 1: Nyjpks =1

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nypeps = 2

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
« Stage 1: Nyjpeps = 3

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT
(1) Number of stages:
¢ Nstages =3
(2) Blocks/stage:
+ Stage 1: Nyjpous = 4

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

+ Stage 1: Nyjers = 4
+ Stage 2: Nyjoes = 1

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjocks = 2

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Npjoeks = 1

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/25tag¢
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

+ Stage 1:

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

+ Stage 1: Ny =1

Decimation in time FFT:
+ Number of stages = log,N
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

« Stage 1: Ny=1

Decimation in time FFT: . Stage 2: N, =1
+ Number of stages = log,N
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

« Stage 1: Ny=1

Decimation in time FFT: . Stage 2: N, =2
+ Number of stages = log,N
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3
(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

« Stage 1: Ny=1

Decimation in time FFT: . Stage 2: N, =2
+ Number of stages = log,N + Stage 3: Ny =1
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

\ /‘* (1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

« Stage 1: Ny=1

Decimation in time FFT: . Stage 2: N, =2
+ Number of stages = log,N + Stage 3: Ny = 2
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3

(2) Blocks/stage:

« Stage 1: Nyjoens = 4
+ Stage 2: Nyjgeks = 2

+ Stage 3: Nyjgers = 1
(3) B’flies/block:

« Stage 1: Ny=1

Decimation in time FFT: . Stage 2: N, =2
+ Number of stages = log,N + Stage 3: Ny =3
+ Number of blocks/stage = N/2stage
« Number of butterflies/block = 2stage-1

FFT Implementation

Stage 2 Stage 3

Example: 8 point FFT

(1) Number of stages:

¢ Nstages =3
(2) Blocks/stage:

+ Stage 1: Nyjoks =4
+ Stage 2: Nyjoeks = 2

+ Stage 3: Nyjoers = 1
(3) B’flies/block:

« Stage 1: Ny =1

Decimation in time FFT: . Stage 2: Ny = 2
« Number of stages = log,N + Stage 3: Ny =4
+ Number of blocks/stage = N/2stage
+ Number of butterflies/block = 2stage-1

FFT Implementation

Stage 1 Stage 2 Stage 3

Start Index
Input Index

Twiddle Factor Index

FFT Implementation

Stage 1 Stage 2 Stage 3

Start Index
Input Index

Twiddle Factor Index

FFT Implementation

Stage 1 Stage 2 Stage 3

Start Index
Input Index

Twiddle Factor Index

FFT Implementation

Stage 1 Stage 2

Start Index
Input Index

Twiddle Factor Index
Indicies Used

FFT Implementation

¢ The most important aspect of converting
the FFT diagram to ‘C’ code Is to
calculate the upper and lower indices of
each butterfly:

GS = N/4; /* Group step initial value */
step = 1; /* Initial value */
NB = N/2; /* NB i1s a constant */

for (k=N; k>1; k>>1) /* Repeat this loop for each stage */
{
for (J=0; jJ<N; jJ+=GS) /* Repeat this loop for each block */
{

{
upperindex = n;
lowerindex = n+step;
¥

by
/* Change the GS and step for the next stage */

GS = GS << 1;
step = step << 1;

for (n=jJ; n<(+GS-1); n+=step) /* Repeat this loop for each butterfly */

FFT Implementation

¢ How to declare and access twiddle factors:
(1) How to declare the twiddle factors:

struct {
short real; // 32767 * cos (2*pi*n) -> Q15 format
short imag; // 32767 * sin (2*pi*n) -> Q15 format
} w[l = { 32767,0,
32767,-201,

¥

(2) How to access the twiddle factors:

short temp_real, temp_imag;

temp_real = w[i].real;
temp_imag = w[i]-imag;

